返回首页

网站导航
资讯首页> 网站公告 >产品资讯 > 楼宇自控系统空调节能控制方案

    楼宇自控系统空调节能控制方案

    产品资讯2019年08月27日
    分享
      楼宇自控系统能改善建筑设备的性能,通过充分发挥被控设备的运行效率,实现建筑物内能源优化调度,当楼宇自控系统空调设备冷源分配不均的情况下,如何应用楼宇自控系统来调节、解决能耗问题呢?
      楼宇自控系统空调节能
      一、楼宇自控系统空调设备冷源分配不均的现象及原因分析
      
      空调系统在智能建筑中能耗占比最大,约为40%~60%,因此对空调设备的节能控制显得尤为重要。空调系统在设计时通常以按天气最热最冷、负荷最大时的条件计算,并且预留10%~20%设计余量。鉴于建筑物实际运行中绝大部分时间不会在满负荷工作下,空调系统实际存在较大的运行裕量。
      
      因此,通过楼宇自控系统对空调设备进行节能控制,可以大幅降低能源消耗,提高设备使用效率,带来显著的经济效益。下面结合作者对办公楼的节能控制实例,介绍如何通过楼宇自控系统运行程序,实现办公楼整体冷源合理调配。
      
      造成此问题的原因,主要有以下3个因素:
      
      (1)空调机的控制时程安排不合理
      
      从能源使用需求时间看,食堂、后厨、会议厅使用时间并不完全相同,且食堂用餐高峰与会议时间一般不同。因此,上述三种区域的空调机组应按冷源实际需求进行启停控制,但楼宇控制系统各空调机组的初始控制程序的启动时间均一致,导致各区域在同一时刻内集中使用冷源,造成了冷源供给与实际需求不对应的现象。
      
      (2)未能够有效利用自然冷源
      
      目前D座各空调机的新风控制均采用20%新风80%回风的混风控制方式,由于新风系统温度随室外时间变化,在夏季时温度较低且湿度合适的时(特别是早上5点至8点时)应多采用自然冷源,而在室外温度较高时,在满足室内空气指标(即二氧化碳浓度上限的条件下),可以采用闭式循环(即全回风模式)或最小新风模式,以节省冷源需求。
      
      (3)风机频率未能做有效即时调整
      
      目前D座空调机组虽然配备了变频器,但未对频率加以动态控制。当室外温度较低时,可以加大空调机的频率,高效利用自然冷源。当空调系统供回水温差较小,冷源利用率较低时,也可采用提高空调机频率的方式,加大单位时间内的风量,提升热交换总量,进而提高空调机供回水温差,充分利用冷源。
      
      案例背景:某办公楼于1997年建成,共有A、B、C、D四座单体建筑,系统冷源均由A座地下的一个冷冻站提供。其中,D座建筑为食堂、会议用途,地下两层、地上三层,总建筑面积约为1万平方米。除地上三层为会议厅外,地下二层至地上二层均为餐厅、食堂。会议厅最多可容纳800人,是进行大型会议、演出的重要场所。从空调系统来看,会议厅处于D座建筑冷源供给的最末端。随着气温逐年升高,设备日趋老化,会议厅内出现了制冷效率出现明显不足的现象,尤其在夏季室外温度较高时,无法及时保证将会场内的温度控制在舒适范围内。如何通过楼宇自控系统来调节空调温度,节省能耗?
      楼宇自控空调系统
      二、楼宇自控系统空调节能控制方案
      
      为解决上述问题,有两种楼宇自控系统空调节能控制方案可供选择。
      
      一种为楼宇自控系统空调设备惯常方案,即增加冷源运行设备(冷冻机、冷冻水泵等)。此方式虽然可以满足会议厅的冷源需求,但却容易出现因其他空调机组冷源需求供给过量,导致冷水机组总体供回水温差低,冷源效率不佳的状况,且大幅增加了设备的运行费用及日后维护、检修的工作量;
      
      另一种方案是优化空调设备现有单泵冷源供给的分配,通过调整现有控制程序,在不投入更多运行设备的基础上,进行节能潜力挖掘。为实现第二种方案,我们首先对D座空调系统进行了系统检测,从水路(压力、流量)、风路(风量)及自控系统(传感器、执行器、控制程序)三个方面进行。
      
      从检测结果来看,D座冷源供水流量分布不均,在单台冷冻泵运转情况下,3层会议厅的冷源供水流量大多被1、2层食堂截取,造成了食堂供回水温差小、会议厅的供回水温差大的现象,使得会议厅的温度控制无法及时保证。
      楼宇自控系统空调节能控制方案
      三、优化冷源供给调度的节能运行方案
      
      针对上述问题,我们采取了优化控制方式,以“分时、分段、分温度”为指导原则,依据使用情况分配冷源,具体内容如下:
      
      针对D座3层会议厅与D座其他食堂区域冷源时间需求不同的特点,我们通过楼宇自控系统对风机回水水阀的控制,分不同时间段满足各自使用需求。在上午,尤其是早9:00至11:00阶段,整个系统优先食堂后厨的冷源需求,而在中午11:00至1:00时,优先保证食堂餐厅内的冷源需求。在其他时段,优先保证会议厅的供冷需求,当出现回水水温过高,进而出现冷源不足时,可提高餐厅的设定温度,同时联动控制食堂空调机组的水阀开度,将冷源优先供给会议厅需求。
      
      同时,若会议厅上午需使用,则通过预冷方案进行控制,即在每日早5:00开启会议厅空调机组,使室温降为较低值。若室外温度较低,则可全开新风阀,并将风机频率开至最大50Hz,争取在早7:00前提前将室内温度控制在室内21°-22°的范围。在7:00-8:00后,利用会议厅围护结构的蓄冷能力,将室内温度控制在24°-26°范围内,并随着室外温度的升高,减小新风阀开度,满足会议召开时的室内温度控制需求。
      
      从实践情况来看,通过楼宇自控系统对空调设备的启停时间、风机频率、新风阀开度以及水阀开度等进行实时控制,达到了优化冷源分配方式的效果,在未开启其他冷冻机组及冷冻水泵的情况下,实现了冷源的优化供给,避免了因会议厅冷源需求不足而增加冷源系统设备运转数量,造成冷源的浪费。
      
      在建筑物已经投运后,根据建筑物实际的使用功能和设备负荷,对空调设备系统的运行状态进行精确调整,在保证室内空间舒适要求下实现节能运行,是一个综合、系统的质量控制过程。
      
      物业管理人员需在充分了解建筑物内能源需求特点的同时,熟练掌握对楼宇自控系统及被控设备的运行原理,以办公楼整体能源调配为目标,最大限度地调配好现有能源供给,以达到节能效果,从而实现企业效益与社会效益的共赢。
      
      通过楼宇自控系统能够解决空调设备节能问题,除此以外,楼宇自控系统还能解决很多其他的问题,是目前智能建筑的重要组成部分,如果您需要楼宇自控系统解决方案或楼宇自控的相关产品,可以关注河姆渡弱电安防平台,我们将为您提供一站式的解决方案。

    相关阅读